Benjamin Yellen

Image of Benjamin Yellen

Associate Professor in the Department of Mechanical Engineering and Materials Science

Yellen's group is interested in developing highly parallel mechanisms for controlling the transport and assembly of ensembles of objects ranging from micron-sized colloidal particles to single cells.  As of 2013, Professor Yellen is active in two main areas of research:
1) Development of single cell analysis tools using magnetic circuits. The goal of this project is to develop an automated single cell analysis platform that allows for highly flexible and highly parallel manipulation of single cells. Our approach draws inspiration from electronic circuit theory through the development highly flexible methods for transporting particles above magnetic thin film patterns either reversibly (conductor) or irreversibly (rectifier), storing cells in well-defined regions of space either temporarily (capacitor) or permanently (data storage), switching current pathways at selected junctions (transistor) and coordinating a large set of electronic functions with few input wires (multiplexer). When combined with microfluidic systems that allow for repeated doses of pharmaceuticals, we will have a developed a platform that is ripe to have a major impact on the field of HIV eradication and cancer suppression.
2) Multiparticle assembly of colloidal crystals. The goal of this project is to understand the formation and phase transitions occuring inside single crystals composed of alloys of colloidal particles.  Here, we are interested in observing crystals forming from magnetic and non-magnetic colloidal particles dispersed inside ferrofluid.  We are just beginning to solve the questions of how to grow large single crystals, and how to transform these crystals by tilting of an external magnetic field.  The results of this project will serve as useful models for understanding how crystals form and transform in the corollary atomic scale materials in nature.

Appointments and Affiliations
  • Associate Professor in the Department of Mechanical Engineering and Materials Science
  • Associate Professor of Biomedical Engineering
Contact Information:
  • Office Location: Ciemas 3389, Durham, NC 27708
  • Office Phone: (919) 660-8261
  • Email Address:
  • Web Pages:

  • Ph.D. Drexel University, 2004

Curriculum Vitae
Research Interests:

Theoretical and Experimental studies on concentration gradients arising in ionic fluids and magnetic liquids.


Micro-electronic mechanical machines
Nanomaterial manufacturing and characterization
Nonlinear Dynamics
Computational Electromagnetics
Soft materials
Biological Materials
Active materials
Heat and mass transfer
Drug Delivery

Awards, Honors, and Distinctions:

  • Benjamin Franklin Key Award, IEEE, Philadelphia Chapter, 2004
  • National Defense Science and Engineering Graduate Research Fellowship, National Defense Science and Engineering Graduate Program, 2002-2005
  • World Technology Network Award Nominee, World Technology Network, 2005

Courses Taught:
  • EGR 244L: Dynamics
  • ME 555: Advanced Topics in Mechanical Engineering

Representative Publications: (More Publications)
    • Abedini-Nassab, R; Murdoch, DM; Kim, C; Yellen, BB, Optimization of magnetic switches for single particle and cell transport, Journal of Applied Physics, vol 115 no. 24 (2014), pp. 244509-244509 [10.1063/1.4884609] [abs].
    • Lim, B; Reddy, V; Hu, X; Kim, K; Jadhav, M; Abedini-Nassab, R; Noh, Y; Lim, YT; Yellen, BB; Kim, C, Magnetophoretic circuits for digital control of single particles and cells, Nature Communications, vol 5 (2014) [10.1038/ncomms4846] [abs].
    • Tahir, MA; Nori, F; Yellen, BB, Dynamically-tunable colloidal band-pass and band-gap filters, Journal of Applied Physics, vol 115 no. 13 (2014), pp. 134902-134902 [10.1063/1.4870041] [abs].
    • Ferris, R; Yellen, B; Zauscher, S, Electric double layer formed by polarized ferroelectric thin films: Implications for sensing and colloidal manipulation in aqueous media, ACS National Meeting Book of Abstracts, vol 246 (2013) [abs].
    • Ferris, RJ; Lin, S; Therezien, M; Yellen, BB; Zauscher, S, Electric double layer formed by polarized ferroelectric thin films., ACS Applied Materials and Interfaces, vol 5 no. 7 (2013), pp. 2610-2617 [10.1021/am3031954] [abs].