Guglielmo Scovazzi

Publications

  • Siefert, C; Tuminaro, R; Gerstenberger, A; Scovazzi, G; Collis, SS, Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order, Computational Geosciences: modeling, simulation and data analysis (2014) [abs].
  • Huang, H; Scovazzi, G, A high-order, fully coupled, upwind, compact discontinuous Galerkin method for modeling of viscous fingering in compressible porous media, Computer Methods in Applied Mechanics and Engineering, vol 263 (2013), pp. 169-187 [10.1016/j.cma.2013.04.010] [abs].
  • Gerstenberger, A; Scovazzi, G; Collis, SS, Computing gravity-driven viscous fingering in complex subsurface geometries: A high-order discontinuous Galerkin approach, Computational Geosciences: modeling, simulation and data analysis, vol 17 no. 2 (2013), pp. 351-372 [10.1007/s10596-012-9334-y] [abs].
  • Scovazzi, G; Gerstenberger, A; Collis, SS, A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media., J. Comput. Physics, vol 233 (2013), pp. 373-399 [10.1016/j.jcp.2012.09.003] [abs].
  • Bazilevs, Y; Akkerman, I; Benson, DJ; Scovazzi, G; Shashkov, M, Isogeometric analysis of Lagrangian hydrodynamics., J. Comput. Physics, vol 243 (2013), pp. 224-243 [10.1016/j.jcp.2013.02.021] [abs].
  • Rider, WJ; Love, E; Scovazzi, G; Weirs, VG, A high resolution Lagrangian method using nonlinear hybridization and hyperviscosity, Computers and Fluids, vol 83 (2013), pp. 25-32 [10.1016/j.compfluid.2012.09.009] [abs].
  • Scovazzi, G; Huang, H; Collis, SS; Yin, J, A fully-coupled upwind discontinuous Galerkin method for incompressible porous media flows: High-order computations of viscous fingering instabilities in complex geometry, Journal of Computational Physics, vol 252 (2013), pp. 86-108 [10.1016/j.jcp.2013.06.012] [abs].
  • Scovazzi, G; Carnes, B, Weak boundary conditions for wave propagation problems in confined domains: Formulation and implementation using a variational multiscale method, Computer Methods in Applied Mechanics and Engineering, vol 221-222 (2012), pp. 117-131 [10.1016/j.cma.2012.01.018] [abs].
  • Scovazzi, G, Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach., J. Comput. Physics, vol 231 (2012), pp. 8029-8069 [10.1016/j.jcp.2012.06.033] [abs].
  • Rider, WJ; Love, E; Scovazzi, G; Weirs, VG, A high resolution Lagrangian method using nonlinear hybridization and hyperviscosity, Computers and Fluids (2012) [10.1016/j.compfluid.2012.09.009] [abs].
  • Scovazzi, G; Gerstenberger, A; Collis, SS, A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media, Journal of Computational Physics (2012) [10.1016/j.jcp.2012.09.003] [abs].
  • Ortega, AL; Scovazzi, G, A geometrically-conservative, synchronized, flux-corrected remap for arbitrary Lagrangian-Eulerian computations with nodal finite elements, Journal of Computational Physics, vol 230 no. 17 (2011), pp. 6709-6741 [10.1016/j.jcp.2011.05.005] [abs].
  • Bochev, P; Ridzal, D; Scovazzi, G; Shashkov, M, Formulation, analysis and numerical study of an optimization-based conservative interpolation (remap) of scalar fields for arbitrary Lagrangian-Eulerian methods, Journal of Computational Physics, vol 230 no. 13 (2011), pp. 5199-5225 [10.1016/j.jcp.2011.03.017] [abs].
  • Masud, A; Scovazzi, G, A heterogeneous multiscale modeling framework for hierarchical systems of partial differential equations, International Journal for Numerical Methods in Fluids, vol 65 no. 1-3 (2011), pp. 28-42 [10.1002/fld.2456] [abs].
  • Auricchio, F; Scovazzi, G, Numerical methods for multi-material fluids and structures (MULTIMAT-2009), International Journal for Numerical Methods in Fluids, vol 65 no. 11-12 (2011), pp. 1279-1280 [10.1002/fld.2546] [abs].
  • Scovazzi, G; Love, E, A generalized view on Galilean invariance in stabilized compressible flow computations, International Journal for Numerical Methods in Fluids, vol 64 no. 10-12 (2010), pp. 1065-1083 [10.1002/fld.2417] [abs].
  • Scovazzi, G; Shadid, JN; Love, E; Rider, WJ, A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics, Computer Methods in Applied Mechanics and Engineering, vol 199 no. 49-52 (2010), pp. 3059-3100 [10.1016/j.cma.2010.03.027] [abs].
  • Hughes, TJR; Scovazzi, G; Tezduyar, TE, Stabilized methods for compressible flows, Journal of Scientific Computing, vol 43 no. 3 (2010), pp. 343-368 [10.1007/s10915-008-9233-5] [abs].
  • Love, E; Rider, WJ; Scovazzi, G, Stability analysis of a predictor/multi-corrector method for staggered-grid Lagrangian shock hydrodynamics, Journal of Computational Physics, vol 228 no. 20 (2009), pp. 7543-7564 [10.1016/j.jcp.2009.06.042] [abs].
  • Love, E; Scovazzi, G, On the angular momentum conservation and incremental objectivity properties of a predictor/multi-corrector method for Lagrangian shock hydrodynamics, Computer Methods in Applied Mechanics and Engineering, vol 198 no. 41-44 (2009), pp. 3207-3213 [10.1016/j.cma.2009.06.002] [abs].
  • Scovazzi, G; Love, E; Shashkov, MJ, Multi-scale Lagrangian shock hydrodynamics on Q1/P0 finite elements: Theoretical framework and two-dimensional computations, Computer Methods in Applied Mechanics and Engineering, vol 197 no. 9-12 (2008), pp. 1056-1079 [10.1016/j.cma.2007.10.002] [abs].
  • Robinson, AC; Brunner, TA; Carroll, S; Richarddrake, ; Garasi, CJ; Gardiner, T; Haill, T; Hanshaw, H; Hensinger, D; Labreche, D; Lemke, R; Love, E; Luchini, C; Mosso, S; Niederhaus, J; Ober, CC; Petney, S; Rider, WJ; Scovazzi, G; Strack, OE; Summers, R; Trucano, T; Weirs, VG; Wong, M; Voth, T, ALEGRA: An arbitrary Lagrangian-Eulerian multimaterial, multiphysics code, 46th AIAA Aerospace Sciences Meeting and Exhibit (2008) [abs].
  • Scovazzi, G, Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations, Computer Methods in Applied Mechanics and Engineering, vol 196 no. 4-6 (2007), pp. 967-978 [10.1016/j.cma.2006.08.009] [abs].
  • Scovazzi, G, A discourse on Galilean invariance, SUPG stabilization, and the variational multiscale framework, Computer Methods in Applied Mechanics and Engineering, vol 196 no. 4-6 (2007), pp. 1108-1132 [10.1016/j.cma.2006.08.012] [abs].
  • Scovazzi, G, Galilean invariance and stabilized methods for compressible flows, International Journal for Numerical Methods in Fluids, vol 54 no. 6-8 (2007), pp. 757-778 [10.1002/fld.1423] [abs].
  • Bazilevs, Y; Calo, VM; Cottrell, JA; Hughes, TJR; Reali, A; Scovazzi, G, Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol 197 no. 1-4 (2007), pp. 173-201 [10.1016/j.cma.2007.07.016] [abs].
  • Scovazzi, G; Christon, MA; Hughes, TJR; Shadid, JN, Stabilized shock hydrodynamics: I. A Lagrangian method, Computer Methods in Applied Mechanics and Engineering, vol 196 no. 4-6 (2007), pp. 923-966 [10.1016/j.cma.2006.08.008] [abs].
  • Hughes, TJR; Scovazzi, G; Bochev, PB; Buffa, A, A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method, Computer Methods in Applied Mechanics and Engineering, vol 195 no. 19-22 (2006), pp. 2761-2787 [10.1016/j.cma.2005.06.006] [abs].
  • Bochev, P; Hughes, TJR; Scovazzi, G, A multiscale discontinuous Galerkin method, Lecture Notes in Computer Science, vol 3743 LNCS (2006), pp. 84-93 [10.1007/11666806_8] [abs].